The smallest eigenvalue of Kr-free graphs

نویسنده

  • Vladimir Nikiforov
چکیده

Let G be a Kr+1-free graph with n vertices and m edges, and let n (G) be the smallest eigenvalue of its adjacency matrix. We show that

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the limit points of the smallest eigenvalues of regular graphs

In this paper, we give infinitely many examples of (non-isomorphic) connected k-regular graphs with smallest eigenvalue in half open interval [−1− √ 2,−2) and also infinitely many examples of (non-isomorphic) connected k-regular graphs with smallest eigenvalue in half open interval [α1,−1− √ 2) where α1 is the smallest root(≈ −2.4812) of the polynomial x3 + 2x2 − 2x − 2. From these results, we ...

متن کامل

The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters

We prove a conjecture by Van Dam & Sotirov on the smallest eigenvalue of (distance-j) Hamming graphs and a conjecture by Karloff on the smallest eigenvalue of (distance-j) Johnson graphs. More generally, we study the smallest eigenvalue and the second largest eigenvalue in absolute value of the graphs of the relations of classical P and Q-polynomial association schemes.

متن کامل

Bounds of Eigenvalues of K3,3-Minor Free Graphs

The spectral radius ρ G of a graph G is the largest eigenvalue of its adjacency matrix. Let λ G be the smallest eigenvalue of G. In this paper, we have described the K3,3-minor free graphs and showed that A let G be a simple graph with order n ≥ 7. If G has no K3,3-minor, then ρ G ≤ 1 √3n − 8. B LetG be a simple connected graph with order n ≥ 3. IfG has noK3,3-minor, then λ G ≥ −√2n − 4, where ...

متن کامل

Graphs and Hermitian matrices: eigenvalue interlacing

Our first aim in this note is to prove some inequalities relating the eigenvalues of a Hermitian matrix with the eigenvalues of its principal matrices induced by a partition of the index set. One of these inequalities extends an inequality proved by Hoffman in [9]. Secondly, we apply our inequalities to estimate the eigenvalues of the adjacency matrix of a graph, and prove, in particular, that ...

متن کامل

Exceptional Graphs with Smallest Eigenvalue -2 and Related Problems

This paper summarizes the known results on graphs with smallest eigenvalue around -2 , and completes the theory by proving a number of new results, giving comprehensive tables of the finitely many exceptions, and posing some new problems. Then the theory is applied to characterize a class of distance-regular graphs of large diameter by their intersection array.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 306  شماره 

صفحات  -

تاریخ انتشار 2006